Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Forum:Satellites - Robotic Probes
Topic:JAXA's Hayabusa2 asteroid sample mission
Want to register?
Who Can Post? Any registered users may post a reply.
About Registration You must be registered in order to post a topic or reply in this forum.
Your UserName:
Your Password:   Forget your password?
Your Reply:


*HTML is ON
*UBB Code is ON

Smilies Legend

Options Disable Smilies in This Post.
Show Signature: include your profile signature. Only registered users may have signatures.
*If HTML and/or UBB Code are enabled, this means you can use HTML and/or UBB Code in your message.

If you have previously registered, but forgotten your password, click here.

The day before, the Japanese Space Agency's Hayabusa2 began its descent towards Ryugu. MASCOT was ejected at an altitude of 51 metres and descended in free fall – slower than an earthly pedestrian – to its destination, the asteroid. The relief about the successful separation and subsequent confirmation of the landing was clearly noticeable In the MASCOT Control Centre at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) as well as in the adjoining room: "It could not have gone better," explained MASCOT project manager Tra-Mi Ho from the DLR Institute of Space Systems. "From the lander's telemetry, we were able to see that it separated from the mothercraft, and made contact with the asteroid surface approximately 20 minutes later." The team is now in contact with the lander.

The moment of separation was one of the risks of the mission: If MASCOT had not successfully separated from Hayabusa2 as planned and often tested, the lander’s team would hardly have had the opportunity to solve this problem. But everything went smoothly: Already during the descent on the asteroid, the camera switched MASCAM on and took 20 pictures, which are now stored on board the Japanese space probe. "The camera worked perfectly," says Ralf Jaumann, DLR planetary scientist and scientific director of the camera instrument. "The team's first images of the camera are therefore safe."

The magnetometer team was also able to recognise in the data sent by MASCOT that the MASMAG instrument had switched on and performed measurements prior to the separation. "The measurements show the relatively weak field of the solar wind and the very strong magnetic disturbances caused by the spacecraft," explains Karl-Heinz Glaßmeier from the Technical University of Braunschweig. "At the moment of the separation, we expected a clear decrease of the interference field – and we were able to recognise this clearly."

MASCOT came to rest on the surface approximately 20 minutes after the separation. Now, the team is analysing the data that MASCOT is sending to Earth to understand the events occurring on the asteroid Ryugu. The lander should now be on the asteroid’s surface, in the correct position thanks to its swing arm, and have started to conduct measurements independently.

There are four instruments on board: a DLR camera and radiometer, an infrared spectrometer from the Institut d'Astrophysique Spatiale and a magnetometer from the TU Braunschweig. Once MASCOT has performed all planned measurements, it is expected to hop to another measuring location. This is the first time that scientists will receive data from different locations on an asteroid.

"With MASCOT, we have the unique opportunity to study the Solar System’s most primordial material directly on an asteroid," emphasises DLR planetary researcher Ralf Jaumann. With the data acquired by MASCOT and the samples that Hayabusa2 brings to Earth from Ryugu in 2020, scientists will not only learn more about asteroids, but more about the formation of the Solar System. "Asteroids are very primordial celestial bodies."

Hayabusa2 is a Japanese space agency (Japan Aerospace Exploration Agency; JAXA) mission to the near-Earth asteroid Ryugu. The German-French lander MASCOT on board Hayabusa2 was developed by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) and built in close cooperation with the French space agency CNES (Centre National d'Etudes Spatiales). DLR, the Institut d'Astrophysique Spatiale and the Technical University of Braunschweig have contributed the scientific experiments on board MASCOT. The MASCOT lander and its experiments are operated and controlled by DLR with support from CNES and in constant interaction with the Hayabusa2 team.

Robert PearlmanDLR release
Three hops in three asteroid days – MASCOT successfully completes the exploration of the surface of asteroid Ryugu

It was a day full of exciting moments and a happy team of scientists and engineers: late in the afternoon of 3 October 2018, the German-French lander MASCOT completed its historic exploration of the surface of the asteroid Ryugu at 21:04 CEST, as its battery ran out.

On-asteroid operations were originally scheduled to last 16 hours after separation from the Japanese mothercraft Hayabusa2. But in the end, the battery lasted more than 17 hours.

Upon landing in the early morning and subsequently relocating using the built-in swing arm, all instruments collected detailed data on the composition and nature of the asteroid. The on-board camera provided pictures of the landing, hopping manoeuvres and various locations on the surface.

For MASCOT, the Sun set three times on Ryugu. The lander was commanded and controlled from the MASCOT Control Centre at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) in Cologne, in the presence of teams of scientists from Japan, France and Germany. All scientific data was transferred to the mother probe according to plan.

"With MASCOT, it has been possible to, for the first time, explore the surface of an asteroid directly on site so extensively," says Hansjörg Dittus, DLR Executive Board Member for Space Research and Technology. "A mission like this can only be done working in close cooperation with international partners – bringing together all their expertise and commitment." With MASCOT, DLR has been working closely with the Japanese space agency JAXA and the French space agency CNES.

Jumps and a mini-move

MASCOT landed safely on Ryugu in the early morning of 3 October 2018.

"After a first automated reorientation hop, it ended up in an unfavourable position. With another manually commanded hopping manoeuvre, we were able to place MASCOT in another favourable position thanks to the very precisely controlled swing arm," says MASCOT operations manager Christian Krause from DLR.

Above: Hayabusa2 acquires images of MASCOT on its approach to Ryugu. Three consecutive images acquired on 3 October 2018 between 03:57:54 and 03:58:14 CEST with the wide-angle optical navigation camera (ONC-W2). MASCOT can be seen at the top. (JAXA, Tokyo University, Kochi Univ., Rikkyo Univ., Nagoya Univ., Chiba Institute of Technology, Meiji Univ., Aizu Univ., AIST)

From that position, MASCOT completed a complete measurement sequence with all instruments over one asteroid day and an asteroid night.

"Later, we were able to continue the activities on Ryugu with a special manoeuvre," adds Ralf Jaumann, DLR planetary scientist and scientific director of MASCOT. "With a 'mini-move' we recorded image sequences that will be used to generate stereo images of the surface once they have been analysed."

During the first manoeuvres, MASCOT moved several metres to the next measuring point. Finally, and seeing that the lander still had battery power left, the researchers dared to make a bigger jump.

All in all, MASCOT explored Ryugu for three asteroid days and two asteroid nights. A day-night cycle on Ryugu lasts about 7 hours and 36 minutes. At 21:04 CEST, communications with Hayabusa2 were interrupted, because of the radio shadow entering with each asteroid rotation. Hayabusa2 is now returning to its home position, at an altitude of 20 kilometres above the asteroid's surface.

In addition to the images acquired by the DLR camera MASCAM, a DLR radiometer, a magnetometer from TU Braunschweig and a spectrometer from the Institut d'Astrophysique Spatiale provided a variety of measurements on the temperature, magnetic properties and the composition of the near-Earth asteroid Ryugu.

Waiting for the scientific data

MASCOT is now a silent inhabitant of Ryugu.

"The evaluation of the valuable data has just begun," says MASCOT project manager Tra-Mi Ho from the DLR Institute of Space Systems. "We will learn a lot about the past of the Solar System and the importance of near-Earth asteroids like Ryugu. Today, I look forward to the scientific publications that will result from MASCOT and the remarkable Hayabusa2 mission of our Japanese partners."

Hayabusa2 played a crucial role in the success of MASCOT. The Japanese probe brought the lander to the asteroid. Thanks to precise planning and control, the communication links to the lander could be optimally used for data transmission, so that the first pictures were received on the very day of landing. The remaining scientific data, which was transmitted to Hayabusa2, will be sent to Earth in the coming days.

Robert PearlmanDLR release
Numerous boulders, many rocks, no dust: MASCOT's zigzag course across the asteroid Ryugu

Six minutes of free fall, a gentle impact on the asteroid and then 11 minutes of rebounding until coming to rest. That is how, in the early hours of 3 October 2018, the journey of the MASCOT asteroid lander began on Asteroid Ryugu – a land full of wonder, mystery and challenges. Some 17 hours of scientific exploration followed this first "stroll" on the almost 900-metre diameter asteroid.

The lander was commanded and controlled from the MASCOT Control Centre at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) site in Cologne in the presence of scientific teams from Germany, France and Japan. MASCOT surpassed all expectations and performed its four experiments at several locations on the asteroid. Never before in the history of spaceflight has a Solar System body been explored in this way. It has now been possible to precisely trace MASCOT's path on Ryugu's surface on the basis of image data from the Japanese Hayabusa2 space probe and the lander's images and data.

Above: MASCOT's approach to Ryugu and its path across the surface.

"This success was possible thanks to state-of-the-art robotic technology, long-term planning and intensive international cooperation between the scientists and engineers of the three space nations Japan, France and Germany," says Hansjörg Dittus, DLR Executive Board Member for Space Research and Technology about this milestone in Solar System exploration. "We are proud of how MASCOT was able to master its way across the asteroid Ryugu over boulders and rocks and send so much data about its composition back to Earth," says DLR Chair Pascale Ehrenfreund.

MASCOT had no propulsion system and landed in free fall. Six minutes after separating from Hayabusa2, and following the end of a ballistic trajectory, the landing module made its first contact with asteroid Ryugu. On the surface, MASCOT moved through the activation of a tungsten swing arm accelerated and decelerated by a motor. This made it possible for MASCOT to be repositioned to the 'correct' side or even perform hops across the asteroid's surface. The gravitational attraction on Ryugu is just one 66,500th of the Earth's, so the little momentum provided was enough: a technological innovation for an unusual form of mobility on an asteroid surface used for the first time in the history of space travel as part of the Hayabusa2 mission.

Above: MASCOT's image of Ryugu's south polar region shortly after separation.

Through a rock garden full of rough boulders and no flat surfaces

To reconstruct MASCOT's path across the surface of Ryugu, the cameras aboard the Hayabusa2 mother probe were aimed at the asteroid. The Optical Navigation Cameras (ONC) captured the lander's free fall in several images, detected its shadow on the ground during the flight phase, and finally identified MASCOT directly on the surface in several images. The pattern of the countless boulders distributed on the surface could also be seen in the direction of the respective horizon in oblique photographs of the lander's DLR MASCAM camera. The combination of this information unlocked the unique path traced by the lander.

Above: MASCOT image pointing east while descending on Ryugu.

After the first impact, MASCOT smoothly bounced off a large block, touched the ground about eight times, and then found itself in a resting position unfavorable for the measurements. After commanding and executing a specially prepared correction maneuver, MASCOT came to a second halt. The exact location of this second position is still being determined. There, the lander completed detailed measurements during one asteroid day and night. This was followed by a small 'mini-move' to provide the MicrOmega spectrometer with even better conditions for measuring the composition of the asteroid material.

Finally, MASCOT was set in motion one last time for a bigger jump. At the last location it carried out some more measurements before the third night on the asteroid began, and contact with Hayabusa2 was lost as the spaceship had moved out of line of sight. The last signal from MASCOT reached the mother probe at 21:04 CEST. The mission was over. "We were expecting less than 16 hours of battery life because of the cold night, says MASCOT project manager Tra-Mi Ho from the DLR Institute of Space Systems. "After all, we were able to operate MASCOT for more than one extra hour, even until the radio shadow began, which was a great success." During the mission, the team named MASCOT's landing site (MA-9) "Alice's Wonderland," after the eponymous book by Lewis Carroll (1832-1898).

Above: MASCOT's fourth image during the descent to Ryugu.

A true wonderland

Having reconstructed the events that took place on asteroid Ryugu, the scientists are now busy analyzing the first results from the acquired data and images. "What we saw from a distance already gave us an idea of what it might look like on the surface," reports Ralf Jaumann from the DLR Institute of Planetary Research and scientific director of the MASCOT mission. "In fact, it is even crazier on the surface than expected. Everything is covered in rough blocks and strewn with boulders. How compact these blocks are and what they are composed of, we still do not know. But what was most surprising was that large accumulations of fine material are nowhere to be found – and we did not expect that. We have to investigate this in the next few weeks, because the cosmic weathering would actually have had to produce fine material," continues Jaumann.

"MASCOT has delivered exactly what we expected: an 'extension' of the space probe on the surface of Ryugu and direct measurements on site," says Tra-Mi Ho. Now there are measurements across the entire spectrum, from telescope light curves from Earth to remote sensing with Hayabusa2 through to the microscopic findings of MASCOT. "This will be of enormous importance for the characterization of this class of asteroids," emphasizes Jaumann.

Above: After first contact with the surface: the landing site environment.

Ryugu is a C-type asteroid – a carbon-rich representative of the oldest bodies of the four-and-a-half-billion year-old Solar System. It is a "primordial" building block of planet formation, and one of 17,000 known Near-Earth asteroids.

On Earth, there are meteorites with a composition that could be similar to Ryugu's, which are found in the Murchison Range, Australia. However, Matthias Grott from the DLR Institute of Planetary Research and responsible for the radiometer experiment MARA is skeptical as to whether these meteorites are actually representative of Ryugu in terms of their physical properties: "Meteorites such as those found in Murchison are rather massive. However, our MARA data suggests the material on Ryugu is slightly more porous. The investigations are just beginning, but it is plausible to assume that small fragments of Ryugu would not survive the entry into the Earth's atmosphere intact."

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
Hayabusa2 Latest Status, the Successful First Touchdown

National Research and Development Agency Japan Aerospace Exploration Agency (JAXA) executed the asteroid explorer Hayabusa2 operation to touch down the surface of the target asteroid Ryugu for sample retrieval.

Data analysis from Hayabusa2 confirms that the sequence of operation proceeded, including shooting a projectile into the asteroid to collect its sample material. The Hayabusa2 spacecraft is in nominal state. This marks the Hayabusa2 successful touchdown on Ryugu.

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
Asteroid Explorer Hayabusa2's SCI Put into Operation

The National Research and Development Agency Japan Aerospace Exploration Agency (JAXA) separated the SCI (Small Carry-on Impactor) onboard the asteroid explorer Hayabusa2 for deployment to Ryugu and put the SCI into operation.

After the start of the operation, the camera (DCAM3) separated from Hayabusa2 captured an image that shows ejection from Ryugu's surface, which implies that the SCI had functioned as planned.

Hayabusa2 is operating normally. We will be providing further information once we have confirmed whether a crater has been created on Ryugu.

Above: This image captured by the camera separated from Hayabusa2 (DCAM3) shows ejection from Ryugu's surface, which was caused by the collision of the SCI against Ryugu. Image taken at 11:36 a.m., April 5, 2019 (Indicated by the camera, Japan time).

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
Successful Operation of Asteroid Explorer Hayabusa2's SCI

Japan Aerospace Exploration Agency (JAXA) separated the SCI (Small Carry-on Impactor), which had been onboard the asteroid explorer Hayabusa2, on April 5, 2019, for deployment to Ryugu, and then put the SCI into operation.

As a result of checking the images captured by the Optical Navigation Camera - Telescopic (ONC-T) onboard the asteroid explorer Hayabusa2, we have concluded that a crater was created by the SCI.

Hayabusa2 is operating normally.

Above: Left image: Taken on March 22, 2019. Right image: Taken on April 25, 2019. These images were captured by the Optical Navigation Camera - Telescopic onboard Hayabusa2. By comparing the two images, we have confirmed that an artificial crater was created in the area surrounded by dotted lines. The size and depth of the crater are now under analysis.

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
Success of the Second Touchdown of Asteroid Explorer 'Hayabusa2'

The Japan Aerospace Exploration Agency (JAXA) performed a series of operations for the second touchdown of Asteroid Explorer "Hayabusa2" on the Ryugu asteroid and the collection of its soil samples.

From the data sent from Hayabusa2, it has been confirmed that the touchdown sequence, including the discharge of a projectile for sampling, was completed successfully. Hayabusa2 is functioning normally, and thus the second touchdown ended with success.

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
Hayabusa2 departs from Ryugu

JAXA confirmed Hayabusa2, JAXA's asteroid explorer, left the target asteroid Ryugu.

On November 13, 2019, JAXA operated Hayabusa2 chemical propulsion thrusters for the spacecraft's orbit control.* The confirmation of the Hayabusa2 departure made at 10:05 a.m. (Japan Standard Time, JST) was based on the following data analyses;

  • The thruster operation of Hayabusa2 occurred nominally
  • The velocity leaving from Ryugu is approximately 9.2 cm/s
  • The status of Hayabusa2 is normal
We are planning to conduct performance tests of onboard instruments, including the electric propulsion system, for the return to Earth.

* Hayabusa2 operation hours: 8:00 a.m. (JST) through 13:30 p.m. (JST), November 13. The thruster operation was pre-programmed in the event sequence earlier on the day, and the command was automatically executed.

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
JAXA-the Australian Space Agency Joint Statement for Cooperation in the Hayabusa2 Sample Return Mission

Dr. Hiroshi Yamakawa, President, the Japan Aerospace Exploration Agency (JAXA) and Dr. Megan Clark AC, Head, the Australian Space Agency (the Agency) released a joint statement dated July 14 2020. The statement acknowledges that the capsule of 'Hayabusa2' containing the asteroid samples will land in South Australia on December 6, 2020.

JAXA and the Agency are working through JAXA's plan for the re-entry and recovery of the capsule. The plan will be finalized by the issuance of Authorisation of Return of Overseas Launched Space Object (AROLSO) from the Australian government.

Joint Statement for Cooperation in the Hayabusa2 Sample Return Mission by the Australian Space Agency and the Japan Aerospace Exploration Agency

The Australian Space Agency (the Agency) and the Japan Aerospace Exploration Agency (JAXA) have been in close cooperation on JAXA's asteroid sample-return mission, 'Hayabusa2'. The sample capsule is planned to land in Woomera, South Australia and the Agency and JAXA are working towards the planned safe re-entry and recovery of the capsule containing the asteroid samples.

Recently, JAXA indicated that 6 December 2020 (Australia/Japan time) is its planned target date for the capsule re-entry and recovery. The Agency and JAXA are working through JAXA's application for Authorisation of Return of Overseas Launched Space Object (AROLSO), which will need to be approved under the Space Activities Act (1998).

Successfully realizing this epoch-making sample return mission is a great partnership between Australia and Japan and will be a symbol of international cooperation and of overcoming the difficulties and crisis caused by the pandemic.

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
The Hayabusa2 Re-entry Capsule Approved to Land in Australia

On August 10, 2020, JAXA was informed that the Authorisation of Return of Overseas-Launched Space Object (AROLSO) for the re-entry capsule from Hayabusa2 was issued by the Australian Government. The date of the issuance is August 6, 2020.

The Hayabusa2 re-entry capsule will return to Earth in South Australia on December 6, 2020 (Japan Time and Australian Time). The landing site will be the Woomera Prohibited Area. The issuance of the AROLSO gave a major step forward for the capsule recovery.

We will continue careful operation for return of Hayabusa2 and recovery of the capsule, and the operation status will be announced in a timely manner.

Comment from JAXA President, Hiroshi Yamakawa

"The approval to carry out the re-entry and recovery operations of the Hayabusa2 return sample capsule is a significant milestone. We would like to express our sincere gratitude for the support of the Australian Government as well as multiple organizations in Australia for their cooperation.

"We will continue to prepare for the successful mission in December 2020 in close cooperation with the Australian Government."

Robert PearlmancollectSPACE
JAXA's Hayabusa2 probe returns asteroid Ryugu samples to Earth

A Japanese probe has returned asteroid samples to Earth, dropping its cache over Australia before heading out to study more space rocks.

The Hayabusa2 reentry capsule descended to a soft landing within the Woomera Range Complex in the South Australian outback on Saturday (Dec. 5), completing the primary goal of the Japan Aerospace Exploration Agency's (JAXA) second asteroid sample return mission.

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
Confirmation of the asteroid Ryugu sample collection by the asteroid explorer, Hayabusa2

The Japan Aerospace Exploration Agency is pleased to confirm that samples from asteroid Ryugu have been collected within the sample container inside the re-entry capsule of the asteroid explorer, Hayabusa2.

The Hayabusa2 re-entry capsule was recovered in Woomera, Australia on December 6, 2020 and delivered to the JAXA Sagamihara Campus on December 8. Work then began to open the sample container inside the re-entry capsule.

On December 14, a sample of grains of black sand thought to be derived from asteroid Ryugu was confirmed to be inside the sample container. These are believed to be particles attached to the entrance of the sample catcher (the container in which the samples have been stored).

Work will continue with opening the sample catcher that sits in the sample container. The curation and initial analysis team will remove the samples and proceed with the analysis.

Robert PearlmanJapan Aerospace Exploration Agency (JAXA) release
Images of the samples from Ryugu

Images taken after opening the sample container and sample catcher.

Opening the sample container: Observing the bottom of the sample container from above. Black-colored grains from Ryugu can be seen at the bottom of the sample container, which is outside the chambers in the sample catcher.

Inside the sample container captured by a scope camera.

Samples confirmed in sample catcher chamber A: Close-up of the samples in chamber A, color-corrected to allow for the orange ambient light in the curation facility.

The opened sample catcher chamber A.

Sample catcher chamber A, captured by an optical microscope.

Many particles larger than 1mm were found in both chambers A and C. It appears that the particles in chamber C are typically bigger than those in chamber A. Chamber C material was gathered during the second touchdown, which is expected to contain subsurface material ejected from the creation of the artificial crater.

Sample catcher chamber C, captured by an optical microscope.

Artificial material seems to be present in chamber C. The origin is under investigation, but a probable source is aluminium scraped off the spacecraft sampler horn as the projectile was fired to stir up material during touchdown.

Contact Us | The Source for Space History & Artifacts

Copyright 1999-2024 collectSPACE. All rights reserved.





advertisement